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ABSTRACT 

An overview is given of the basic theory of heat-flow differential scanning 
calorimetry. An alternative definition of the baseline is proposed and an 
equation for the baseline function is derived. The influence of the 
transfer coefficients on the oualitv of 
and some recotmnendations concerning-the 
given. 

the DSC curve isthoroughly 
construction of a heat-flow 

INTRODUCTION 

In a heat-flow differential scanning calorimeter the temperature 

sample is compared with the temperature of an inert reference, both 

heat 
examined 
DSC are 

of a 

being 

placed in a furnace and submitted to a certain temperature-time program. 

In a number of articles theories are developed which describe the shape and 

area of a DSC peak resulting from a thermal transition in a sample (I-6). 

Analytical equations are derived which give the relation between peak area and 

transition heat. 

In this paper, a description of the basic theory of heat-flow differential 

scanning calorimetry will be given and a new definition of the thermal base- 

line will be proposed. Further, the influences of the heat transfer coef- 

ficients on the shape of a DSC curve will be made clear and recommendations on 

the construction of a heat-flow differential scanning calorimeter are given. 

THEORY 

A schematic description of a heat-flow DSC cell is given in figure 1. 

Fig. 1. Heat-flow DSC cell. 
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The total heat-flow can be considered as being built up of the following 

parts: 

1. 

2. 

3. 

4. 

5. 

Conductive heat-flow from the furnace wall to the sample (YlS) resp. to the 

reference (YlR). 

The respective heat transfer coefficients are indicated as K1S resp. KlR. 

Radiative heat-flow from the furnace wall to the sample (Y2S) resp. to the 

reference (Y2R), with heat-transfer coefficients K2S and K2R. 

Conductive heat-flow through the thermocouple wires (P3S resp. Y3R), with 

heat-transfer coefficients K3S resp. K3R. 

Conductive heat-flow from the sample to the reference (Y4SR), with a heat- 

transfer coefficient K4SR. 

Radiative heat-flow from the sample to the reference (YsSR), with heat- 

transfer coefficient K5SR. 

If it is assumed that temperature gradients within sample and reference and 

between sample and sample holder (resp. reference and reference holder) are 

zero, the various heat flows are given as: 

Yls = KIS (Tf - (T + AT)) YlR = KlR (Tf - T) 

'2s = K2S Uf4 - (T + ATI Y2R = t+~ (Tf4 - T4) 

~33s = K3S (Tf - (T + AT)) Y3R = K3R (Tf - T) 
(1) 

Y4SR = K4SR ((T + AT) - T) Y5SR = K5SR ((T + ATI - T4) 

In these equations, Tf denotes the temperature of the furnace,, T the 

reference temperature and (T + ATT) the sample temperature. 

When performing an experiment with an inert sample, the heat-flow to the 

reference cell is given as: 
dT 

YR = YlR + Y2R + Y3R + Y4R + y5SR = cR x (2) 

In eq. (2) CR denotes the heat capacity of reference + reference holder. 

From eq. (1) and (2) it follows: 

CR g = KIR (Tf - T) + K2R (Tf 
4 
- T4) + K3R (Tf - T) + 

K4SR ((T + AT) - T) + KSSR ((T f ATI - T4) 

For the heat-flow to the sample a similar equation can be derived: 

C d (T + AT) 
S dt = KIS (Tf - (T+AT)) +K2S (Tf 

4 4 
- (T+AT) )+ 

K3S tTf - (T + AT)) + K4SR (T - (T + AT)) + 

K5SR (T4 - (T + ATI 

(31 

(4) 



The synmnetry of the measuring cell can now be represented as: 

MT = MIS - KIRI (Tf - T) +'(K2S - K2R) (Tf4 - T4) + (K3S - K3R) (Tf - T) (5) 

hKT is proportional to the differences in heat-transfer coefficients be- 

tween sample and reference holder and to the difference in temperature between 

furnace and reference (if the second term is neglected). 

A total heat transfer coefficient is defined as: 

KT = KIS + K3S + 2 K4SR + 4 (K2S + 2 K6SR) T3 (6) 

From (6) it follows that KT is not only a function of the several heat 

transfer coefficients, but also of the temperature. 

Particularly at higher temperatures the last term becomes important. 

Subtraction of (3) and (41, using (5) and (6) gives: 

AKT 'S - 'RI dT 'S d(AT) 
*T=7-(---------- T KT dt KT dt (7) 

This equation gives the initial transient of a heat-flow DSC curve. 

From (7) it can be concluded that AT = 0 when AKT/KT = 0 and CS = CR. 

This illustrates the importance of AKT/KT in the construction of a heat-flow 

differential scanning calorimeter. In order to obtain a small value of hKT/KT 

the symmetry of the construction should be very high, the temperature lag 

(Tf - T) should be 
should be large. 

When the sample 

fig. 2. 

small, the furnace temperature should be homogeneous and KT 

shows a transition, the resulting curve is as given in 

-T 

Fig. 2. Schematic diagram of a heat-flow DSC curve. 



During the transition the heat capacity of sample plus sample holder 

changes from CS via CS + a(t) . ACS to CS + ACS. (a represents the reacted 

fraction. 

At temperatures T < Tb, a = 0; at temperatures Tb 6 T < T,, a = a(t) and when 

T >Te, a--l. 

The heat flow during the transition can be given as: Q %, in which Q is the 
total heat generated or consumed during the reaction. 

NOW, Ys = (C, + a ACS) d(T + AT) ,_Jt 

Using eqs. (4) to (71 it follows: 

“5 AT=K- 
Cs + a ACS - CR dT 

cs + aACs dJJ g_ dlJ 

T KT x- KT dt - KT dt 

At temperatures Tb >T > Te, da/dt = 0 and AT is given as: 

ATb = llKT 'S - 'R dT Cs dATb 
-----X-qdt 
KT KT 

and 

AKT AT’ = - _ 
Cs + ACs - CR dT ‘S dATe 

KT KT x - KT dt 

T < Tb 

T > T, 

(8) 

(9) 

(10) 

(11) 

In ref. 4 the first three terms of the right-hand side of (9) are regarded 

as the baseline function. 

We however define the baseline as the shape of the curve when the sample 

transition proceeds without heat generation or consumption (9 = 0). 

Obviously, 

bKT AT" = - _ 
Cs + aACs - CR dT 'S + aAcS d&T" 

KT KT ?E- KT dt 

in which the index n denotes the thermal neutral transition. 

We now approximate: 

(12) 

(13) 

which, combined with (12) gives: 



AT” 
tiT 'S - 'R dT 

=(l-a)(T- 
T 

_,_+$+ 
KT 

or, if we substitute (10) and (111 and neglect the last term of (14): 

AT” = (1 - a) ATb + aATe 

Equation (15) is called the baseline 

The area of a peak resulting from 

given as: 

Te 

Tb 

J (AT - AT”) dT 

(14) 

(15) 
function. 

a thermal transition for which Q # 0 is 

If we substitute AT - AT” = ATP, ATP can be written as: 

ATp = 
Cs + aACs 

dATP 

KT dt- 82, leading to: 
T 

ITC ATpdT = 

Tb 
- I+% TbITe 1% + aACS) dATP - 

(it is assumed that KTe = KTb). 

The first term of the right-hand side of (17) can be reduced to: 

1 
t $ ACT oJ ATE da 

Eq. (17) therefore reads: 

Te 
I ATpdT=- edT,LdT '~Tpd~ 

Tb 
KT dt KT dt "S o( 

From eq. (18) it follows that the peak area should be 

tain term to give the transition heat Q. This correction 

be neglected when ATP is small, so when KT is large. 

(16) 

(17) 

(18) 

corrected by a cer- 

term is small and may 
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When the reaction is completed, at a temperature Tc, g = 0 and from eq. (9) 
it follows: 

(19) 

*KT 
(neglecting - and - 

cs + Acs - CR dT 

KT KT X') 

Integration gives: 

I dATc _ 
KT --_ 

AT AT’ 
tl CS + ACS dt, leading to 

Al’ = 
KT 

AT’ exp (- .cs+dcs . t) 

Eq. (20) describes the resolving power of a heat-flow differential scanning 

calorimeter, which is the most important quality determining parameter of this 

instrument. 

Summarizing, in the construction of a heat-flow differential scanning 

calorimeter a large value of KT should be aimed at for three reasons. First, a 

small value of AKT/KT is, obtained, secondly, the peak area correction term is 

small and finally, the resolution is high. 

CONCLUSIONS 

On the basis of eqs. (7), (18) and (20) it is shown that KT to a large 

extent controls the performance of a heat-flow differential scanning 

calorimeter. With large values of KT the best thermoanalytical curves are 

obtained. A low thermal lag and a very symmetrical construction give, 

according to eqs. (5), (6) and (71, a good baseline performance over the whole 

temperature range. Starting from these theoretical considerations the dif- 

ferential scanning calorimeter OSC model 42 of Maple Instruments has been 

developed. 
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