A THEORETICAL **EVALUATION OF A HEAT-FLOW DIFFERENTIAL SCANNING CALORIMETER**

G. van der Plaats

Maple Instruments, Pissummerweg 1, 6114 AH Susteren (The Netherlands)

ABSTRACT

An overview is given of the basic theory of heat-flow differential scanning calorimetry. An alternative definition of the baseline is proposed and an equation for the baseline function is derived. The influence of the heat transfer coefficients on the quality of the DSC curve is thoroughly examined **and some recotmnendations concerning-the construction of a heat-flow DSC are given.**

INTRODUCTION

In a heat-flow differential scanning calorimeter the temperature of a sample is compared with the temperature of an inert reference, both being placed in a furnace and submitted to a certain temperature-time program. In a number of articles theories are developed which describe the shape and area of a DSC peak resulting from a thermal transition in a sample (I-6). Analytical equations are derived which give the relation between peak area and transition heat.

In this paper, a description of the basic theory of heat-flow differential scanning calorimetry will be given and a new definition of the thermal baseline will be proposed. Further, the influences of the heat transfer coefficients on the shape of a DSC curve will be made clear and recommendations on the construction of a heat-flow differential scanning calorimeter are given.

THEORY

A schematic description of a heat-flow DSC cell is given in figure 1.

Fig. 1. Heat-flow DSC cell.

0040-6031/84/\$03.00 © 1984 Elsevier Science Publishers B.V.

The total heat-flow can be considered as being built up of the following parts:

1. Conductive heat-flow from the furnace wall to the sample (Y_{1S}) resp. to the **reference** (Ψ_{1R}) .

The respective heat transfer coefficients are indicated as K_{1S} resp. K_{1R} .

- 2. Radiative heat~flow from the furnace wall to the sample (Y_{2S}) resp. to the reference (Y_{2R}), with heat-transfer coefficients K_{2S} and K_{2R}.
- **3. Conductive heat-flow through the thermocouple wires (P3S resp. Y3R), with heat-transfer coefficients K3S resp. K3R.**
- 4. Conductive heat-flow from the sample to the reference (Y_{4SR}), with a heat**transfer coefficient K4SR.**
- **5. Radiative heat-flow from the sample to the reference (YsSR), with heattransfer coefficient K5SR.**

If **it is assumed that temperature gradients within sample and reference and between sample and sample holder (resp. reference and reference holder) are zero, the various heat flows are given as:**

$$
\Psi_{1S} = K_{1S} (T_f - (T + \Delta T)) \qquad \Psi_{1R} = K_{1R} (T_f - T)
$$

\n
$$
\Psi_{2S} = K_{2S} (T_f^4 - (T + \Delta T)^4) \qquad \Psi_{2R} = K_{2R} (T_f^4 - T^4)
$$

\n
$$
\Psi_{3S} = K_{3S} (T_f - (T + \Delta T)) \qquad \Psi_{3R} = K_{3R} (T_f - T)
$$

\n
$$
\Psi_{4SR} = K_{4SR} ((T + \Delta T) - T) \qquad \Psi_{5SR} = K_{5SR} ((T + \Delta T)^4 - T^4)
$$
 (1)

In these equations, T_f denotes the temperature of the furnace, T the reference temperature and $(T + \Delta T)$ the sample temperature.

When performing an experiment with an inert sample, the heat-flow to the reference cell is given as: \mathbf{H}

$$
\Psi_R = \Psi_{1R} + \Psi_{2R} + \Psi_{3R} + \Psi_{4R} + \Psi_{5SR} = C_R \frac{dE}{dt}
$$
 (2)

In eq. (2) C_R denotes the heat capacity of reference + reference holder. **From eq. (1) and (2) it follows:**

$$
C_R \frac{dT}{dt} = K_{1R} (T_f - T) + K_{2R} (T_f^4 - T^4) + K_{3R} (T_f - T) + K_{4SR} ((T + \Delta T) - T) + K_{5SR} ((T + \Delta T)^4 - T^4)
$$
 (3)

For the heat-flow to the sample a similar equation can be derived:

$$
C_{s} \frac{d (T + \Delta T)}{dt} = K_{1S} (T_{f} - (T + \Delta T)) + K_{2S} (T_{f}^{4} - (T + \Delta T)) + K_{3S} (T_{f} - (T + \Delta T)) + K_{4SR} (T - (T + \Delta T)) + K_{5SR} (T^{4} - (T + \Delta T))^{4})
$$
\n(4)

The synmnetry of the measuring cell can now be represented as:

$$
\Delta K_T = (K_{1S} - K_{1R}) (T_f - T) + (K_{2S} - K_{2R}) (T_f^4 - T^4) + (K_{3S} - K_{3R}) (T_f - T) (5)
$$

AK_T is proportional to the differences in heat-transfer coefficients be**tween sample and reference holder and to the difference in temperature between furnace and reference (if the second term is neglected). A total heat transfer coefficient is defined as:**

$$
K_{\overline{1}} = K_{1S} + K_{3S} + 2 K_{4SR} + 4 (K_{2S} + 2 K_{5SR}) T^3
$$
 (6)

From (6) it follows that K_T is not only a function of the several heat **transfer coefficients, but also of the temperature.**

Particularly at higher temperatures the last term becomes important.

Subtraction of (3) and (4), using (5) and (6) gives:

$$
\Delta T = \frac{\Delta K_T}{K_T} - \left(\frac{C_S - C_R}{K_T}\right) \frac{dT}{dt} - \frac{C_S}{K_T} \frac{d(\Delta T)}{dt}
$$
 (7)

This equation gives the initial transient of a heat-flow DSC curve. From (7) it can be concluded that $\Delta T = 0$ when $\Delta K_T/K_T = 0$ and $C_S = C_R$. This illustrates the importance of $\Delta K_T/K_T$ in the construction of a heat-flow differential scanning calorimeter. In order to obtain a small value of $\Delta K_T/K_T$ **the symmetry of the construction should be very high, the temperature lag** (Tf - **T) should be small, the furnace temperature should be homogeneous and KT should be large.**

When the sample shows a transition, the resulting curve is as given in fig. 2.

Fig. 2. Schematic diagram of a heat-flow DSC curve.

During the transition the heat capacity of sample plus sample holder changes from C_S via C_S + $\alpha(t)$. ΔC_S to C_S + ΔC_S . (α represents the reacted **fraction.**

At temperatures $T < T_b$, $\alpha = 0$; at temperatures $T_b < T < T_a$, $\alpha = \alpha(t)$ and when $T > T_e$, $\alpha = 1$.

The heat flow during the transition can be given as: $Q \frac{da}{dt}$, in which Q is the **total heat generated or consumed during the reaction.**

Now,
$$
\Psi_S = (C_S + \alpha \Delta C_S) \frac{d(T + \Delta T)}{dt} + Q \frac{d\alpha}{dt}
$$
 (8)

Using eqs. (4) to (7) it follows:

$$
\Delta T = \frac{\Delta K_T}{K_T} - \frac{C_S + \alpha \Delta C_S - C_R}{K_T} \frac{dT}{dt} - \frac{C_S + \alpha \Delta C_S}{K_T} \frac{d\Delta T}{dt} - \frac{Q}{K_T} \frac{d\alpha}{dt}
$$
 (9)

At temperatures T_b > T > T_e , $d\alpha/dt = 0$ and ΔT is given as:

$$
\Delta T^b = \frac{\Delta K_T}{K_T} - \frac{C_S - C_R}{K_T} \frac{dT}{dt} - \frac{C_S}{K_T} \frac{d\Delta T^b}{dt} \qquad T < T_b
$$
 (10)

and

$$
\Delta T^{e} = \frac{\Delta K_{T}}{K_{T}} - \frac{C_{S} + \Delta C_{S} - C_{R}}{K_{T}} \frac{dT}{dt} - \frac{C_{S}}{K_{T}} \frac{d\Delta T^{e}}{dt}
$$
\n
$$
T > T_{e}
$$
\n(11)

In **ref. 4 the first three terms of the right-hand side of** (9) **are regarded as the baseline function.**

We **however define the baseline as the shape of the curve when the sample transition proceeds without heat generation or consumption (9 = 0). Obviously,**

$$
\Delta T^{n} = \frac{\Delta K_{T}}{K_{T}} - \frac{C_{S} + \alpha \Delta C_{S} - C_{R}}{K_{T}} \frac{dT}{dt} - \frac{C_{S} + \alpha \Delta C_{S}}{K_{T}} \frac{d\Delta T^{n}}{dt}
$$
(12)

in which the index n denotes the thermal neutral transition.

We now approximate:

$$
\frac{d\Delta T^n}{dt} = (1 - \alpha) \frac{d\Delta T^b}{dt} + \alpha \frac{d\Delta T^e}{dt}
$$
 (13)

which, combined with (12) gives:

$$
\Delta T^{n} = (1 - \alpha) \left(\frac{\Delta K_{T}}{K_{T}} - \frac{C_{S} - C_{R}}{K_{T}} \frac{dT}{dt} - \frac{C_{S}}{K_{T}} \frac{d\Delta T^{b}}{dt} \right) + \frac{\alpha K_{T}}{K_{T}} - \frac{C_{S} + \alpha C_{S} - C_{R}}{K_{T}} \frac{dT}{dt} - \frac{C_{S} + \alpha C_{S}}{K_{T}} \frac{d\Delta T^{e}}{dt})
$$
\n
$$
= \alpha (1 - \alpha) \left(\frac{d\Delta T^{b}}{dt} - \frac{d\Delta T^{e}}{dt} \right) \tag{14}
$$

or, if we substitute (10) and (11) and neglect the last term of (14): $\Delta T^{n} = (1 - \alpha) \Delta T^{b} + \alpha \Delta T^{e}$ **Equation (15) is called the baseline function. (15)**

The area of a peak resulting from a thermal transition for which $Q \neq 0$ is **given as:**

$$
T_{\rm b}
$$
\n
$$
T_{\rm b}
$$
\n
$$
T_{\rm b}
$$
\n
$$
\Delta T^{\rm p} = \frac{C_{\rm s} + \alpha \Delta C_{\rm s}}{K_{\rm T}} \frac{d\Delta T^{\rm p}}{dt} - \frac{Q}{K_{\rm T}} \frac{d\alpha}{dt}
$$
\n
$$
T_{\rm c}
$$
\n
$$
T_{\rm b}
$$
\n
$$
T_{\rm c}
$$
\n
$$
T_{\rm b}
$$
\n
$$
T_{\rm c}
$$
\n
$$
T_{\rm
$$

From eq. (18) it follows that the peak area should be corrected by a cer-
tain term to give the transition heat Q. This correction term is small and may
be neglected when
$$
\Delta T^p
$$
 is small, so when K_T is large.

 K_{τ} dt K_{τ} dt \sim S α'

Tb

When the reaction is completed, at a temperature T_c , $\frac{d\alpha}{dt} = 0$ and from eq. (9) **it follows:**

$$
\Delta T^{C} = -\frac{C_{S} + \Delta C_{S}}{K_{T}} \frac{d\Delta T^{C}}{dt}
$$
\n(19)
\n(neglecting $\frac{\Delta K_{T}}{K_{T}}$ and $-\frac{C_{S} + \Delta C_{S} - C_{R}}{K_{T}} \frac{dT}{dt}$)

Integration gives:

$$
\Delta T \int \frac{d\Delta T^{c}}{\Delta T^{c}} = - \int_{t}^{c} \frac{k_{T}}{c_{S} + \Delta c_{S}} dt, \text{ leading to}
$$
\n
$$
\Delta T = \Delta T^{c} \exp(-\frac{k_{T}}{c_{S} + \Delta c_{S}} + t)
$$
\n(20)

Eq. (20) describes the resolving power of a heat-flow differential scanning calorimeter, which is the most important quality determining parameter of this instrument.

Summarizing, in the construction of a heat-flow differential scanning calorimeter a large value of K_T should be aimed at for three reasons. First, a small value of $\Delta K_T/K_T$ is obtained, secondly, the peak area correction term is **small and finally, the resolution is high.**

CONCLUSIONS

On the basis of eqs. (7) , (18) and (20) it is shown that K_T to a large **extent controls the performance of a heat-flow differential scanning** calorimeter. With large values of K_T the best thermoanalytical curves are **obtained. A low thermal lag and a very symmetrical construction give, according to eqs. (5), (6) and (71, a good baseline performance over the whole temperature range. Starting from these theoretical considerations the differential scanning calorimeter OSC model 42 of Maple Instruments has been developed.**

LITERATURE

- **1 E. Koch, Non-isothermal reaction analysis, Academic Press, London, 1972.**
- **2 J. Sestak, J. Thermal Analysis, 1 (1974) 3.**
- **3 M. Nevriva, P. Holbus and J. Sestak, J. Thermal Analysis 3 (1974) 981.**
- **4 P. Holba, M. Nevriva and 3. Sestak, Thermochim. Acta 23 (1978) 223.**
- **5 T. Ozawa, Bull. Chem. Sot. Japan, 39 (1%6) 2071.**
- **6 A.P. Gray, in Analytical Calorimetry, R.S. Porter & H. Johnson ed., Plenum Press, New York, 1968, 209.**